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I. INTRODUCTION

Modern battlefield data communications is often accomplished by formatting digital infor-
mnation into messages composed of characters from a predefined alphabet having finite size. A
message hcader is prepended to the message and contains source, destination, prccedence, type,
and other overhead information.

Because users of military communications require that message delivery be reliable and
error-free, certain additional message processing operations are performed at both source and des-
tination. l'ypically, certain numbers are computed as functions of the message content and are
appended to the message. These numbers are recomputed at the destination and compared with
the respective receivi.d values. If they agree, the recipient acknowledges receipt by sending a
bhort message to the source. Otherwise, in some systems a "non-acknowledgement" message is
sent; in others, the destination simply remains silent. In this manner, the sender knows if the
message was accepted by the destination. If a transmitted message is not acknowledged within a
reasonable timr,, the sender usually retransmits it.

While such retransmission protocols can provide nearly certain assurance of the receipt of
correct messages, poor channel conditions and heavy message traffic will severely load the com-
munication chann-is with retransmitted messages and their acknowledgements. This often results
in unacceptable delays. The problem is compounded when acknowledgement messages themselves
are aborted in the same manner, causing a retransmis sion of the original message. Suggested
improvements have included transmitting each message twice (or more) and eliminating ack-
nowledgement messages. This suggestion probably will not play well in Peoria as the military are
not likely to give up the assurance which they feel is provided by positive acknowledgement.

This r-port postulaktes typical situations and evaluates them quantitatively. The main con-
tribution is the demonstration of an additional error control scheme which could be used on top of
the existing algorithmns. A nonbinary Reed-Solomon (RS) code is used to demonstrate the princi-
ple. It tr,-ats r.h detected character error ns an "erasure" in which the location of the erroneous
character is known but where the value transmitted is not. Since decoders for error control codes
not only correct received symbol errors but also fill in symbols which the channel has erased, the
two-tier scheme suggests that improvements may be possible.

II. BIT ERROR CONTROL IN MESSAGE COMMUNICATIONS

A. THE PROTOCOLS

The simplest of communication protocols computes, for the entire message, a single "check-
sum" ITANE8I]. It the checksum computed by the recipient does not agree with that appended
to the received message, the latter is discarded and must be retransmitted.

A more powerful retransmission scheme uses an error control code with modest error correc-
tion capabilities and the ability to detect somewhat more severe error patterns. It corrects some
channel-induced errors and indicates the existence of others. Such an error detection condition
causes the datalink protocol ITANE811 to suppress acknowledgement of the message. After a
timeout period, the source of the unacknowledged message will retransmit it.

High levels (f noire or interference in a channel will result in the need for multiple transmis-
sions or a signifi1t'. tr fraction of all messages in order to guarantee successful receipt.

In what foUos, the performance of the error control method used in the TACFIRE fire
direction system is determined for a range of communication channels, and additional processing
is examined and shown to provide significant improvement for modest changes in hardware.

9
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B. LINEAR BLOCK CODES

Binary information which naturally occurs in fixed size blocks or which can he conveniently
partitioned into such blocks lends itself to error control using linear block codes (LBC)
Mathematically, a LBC is a k-dimensional subspace of the vector space of n-tuples over the finite
field, GF (q), of qk elements, where q is a positive integer power of a prime and k is any positive
integer.

Structurally, to each block of k inf.)rmation bith from the source, are appended (n 0i
redundant bits, each computed as a linear combination of some subset of the information bits
That is, they transmit no additional information but represent a form of controiled redundancy.
Each information bit must be included in the computation of at least one redundant bit. We
assume throughout that all 2k information patterns are equally likely. Hence, the encoded source
can produce any of 2k binary n-tuples. It is said that each redundant bit is a parity check
[LIN&831 on the information bits which constitute its sum. The value of k is known as the
dimension of the code; its block length is n.

At the destination, the n-tuples (some of whose positions may have been changed by chan-
nel noise) are presented to a decoder which may do some or all of the following:

1. It may recompute, from the information positions, the parity check bits.
If they are the same as those received, it decides that the codeword was received without error.

2. If the computed parity bits differ from those received, it can execute an
algorithm to attempt to locat- which codeword positions were modified by channel noise and
correct thf;se pc"'ltion.

:; if the decoder cannot determine the error locations, it caa signal same to
the me: 'age rcipient.

Figure 1.1 shows a model c,f the process by which information is conveyed from a binar,
sour'e (e.g., a message composition device) over a channel to a destination using a LBC.

DPIN . RY N [ECODER C~kNELK4DECODER BINAkRY1
SOIl RCE k -> n CIAN n-> SINK

Figure 1.1 Binary Model for Linear Block Codes

!ule% for v,,Iecting the s-jbsets of information digits to be checked by a parity digit are con-
,trui(ted So ai to m:rike the codewords pairwise as different a possible. If they are as different as
.'.,ible, correct dercoding can often be unambiguously accomplished by selecting as the transmit-

led .odeufrd that whi-h is "nearest' to the received n-tuple. Thus, while enc(ding produces a
unique n-tuple for .verv block of k information digits, decoding must map many .-tuples into a

-ingle /-tuple
Complete treatments of IBC( can be found in [PETE721 and jLINA '9& .

C TilE BNAI M.IiIi.'rRi( CltANNEI,

The binary v mmetric channel ISC(p) indurc,, errors in binary symbols int1pendently hith
probability p. It is shown in Figure 2.1 as the addition. to the transmitted data, of the output 4
a rindom binary symbol generator which produces a binary ONE with probability p and a ZI'.?)
with probability (1 - p). Thus, an information bit will he inverted if and only if the noise bit is t

10
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ONE, and we say that the channel bit error probability is p. Information theoretic considerations
demand that p < 0.5 [GALL681.

RANDOM BINARY SYMBOL
GENERATOR

INPUT OUTPUT

Figure 2.1 The Binary Symmetric Channel

The behavior of BSC(p) is further represepted by the state transition diagram of Figure 2.2.

0 0

1 1

Figure 2.2 State Transitions in The Binary Symmetric Channel

The BSC provides a convenient vehicle for comparing error detection and correction techniques.
Many physical channels can be modeled as BSC(p) provided suitable techniques such as interleav-
ing are used.

D. HAMMING CODES AND SHORTENED HAMMING CODES

One aim of code design is to make the codewords as different as possible so that, when cor-
rupted by channel noise, a received word tends to be nearer the word transmitted than to any
other word. For transmission over BSC(p), code word difference is expressed as Ilammipg dis-
tance: the number of position, in which the two words differ. It can be shown JPETE721 that
the minimum distance d between two words over a given code guarantees that the code can
correct any error pattern of i or fewer errors provided

where the L -J notation indicates the integer part or the argument. For linear block codes, the
minimum distance between two codewords is equal to the Hamming weight (number of non-7cro
positions) of the minimum weight, non-zero codcword.

Detailed structure of the codewords can be encapsulated in a (k x n) code generator matrix,
G. A binary k-tuple is encoded by postmultiplying it by G to produce a length n codeword.

11



Hence, all codewords are linear combinations of the rows of G. Each linear code

(v,, , • , • v.) f (a,,a 2, • " " at)G (2-)

also has an associated parity check matrix, H, with the property that the product of any code-
word with the transpose of H gives the zero vector:

vHT = 0 (2-2)

The relation between H and G can be seen by ordering the columns of H so that it assumes the
form:

H=Q 1.- (2-3)

The orthogou.Jity property of (2-2) then causes the code generator to have the form (LIN&831G = ItIQj (2-4)

where i, is the jth order identity matrix and T indicates matrix transposition.

Hamming codes [HAMMS0 are block codes having the capability to correct exactly one
error per codeword. If an additional parity check is computed on the entire codeword, the Ham-
ming decoder can detect any combination of two errors in a received word as well.

Codewords have length and dimension as shown in (2-5). All the non-zero m-tuples are the
columns of the code's parity check matrix.

n= 2' - 1

(2-5)

k n - m

Thus, there is one Hamming code for each value of m.

The (15,11) single error correcting Hamming code has the parity check matrix, (2-6), pro-
duced by writing as columns all the binary 4-tuples, ordered numerically.

0000000 111 11111
10001111000011111
I 0110011001100111 (2-6)
[101010101010101J

To obtain the generator matrix of this code, the columns of the parity check matrix are
reordered according to (2-3):

[00001111111 000
1011100011110100 (2-7)

HI = [101101100110010
[110110101010001.
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An augmented generator matrix, then, can be written according to (2-4) as:

100000000000011f
0100000000001011
0010000000001101
0001000000001110
0000100000010011

G = 0000010000010101 (2-8)
0000001000010110
0000000100011001
0000000010011010
0000000001011100
0000000000111111

The 16th column, an even parity check on the entire row, has been added for double error detec-
tion. See Section E, below.

Any error control code of length n can be shortened to length (n-a) by setting to zero s posi-
tions in the information vector. If the first a positions are those set to zero, then all codewords
will begin with o zeros which need not be transmitted. This results in a code of length (n-a) and
dimension (k-a). For example, to construct the TACFIRE DMD error control code, one shortens
the 116,11) code of (2-8) by setting the first four information positions to zero, resulting in the
(12,7) shortened Hamming code of (2-9).

10000001001
010000010101
001000010110

G= 000100011001 (2-9)
000010011010
000001011100
.000000111111

E. PERFORMANCE OF (12,7) SHORTENED HAMMING CODE ON BSC(p)

It is useful to demonstrate the performance of this code on the binary symmetric channel at
this point as the results will be needed later.

According to the TACFIRE datalink protocol [TACF801, the occurrence of two bit errors in
one character, which causes an error detection condition, prevents acknowledgement of receipt of
the message; therefore, the source perceives failure of message receipt and retransmits the mes-
sage. The probability of such an event is given by (2-10) which is an underbound to the actual
detected error probability since some patterns of 4, 6, 8, and 10 errors can be detected by the
decoder.

P2 = (2 P2 (1-P)' (2-10)

Two conditions are necessary for a [lamming decoder to detect the presence of an uncorrect-
able error pattern:

a. The received vector does not belong to the code. This is checked by a simple
matrix multiplication or the evduation of five or fewer linear equations with binary coefficients.

b. The received vector has even parity. The decoder can correct no error pat-
tern of even weight as the code can correct only single errors.

However, those even weight error patterns which map the transmitted codeword into
another codeword w-e undetectable. The number of such patterns is given by the weight

13
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discrete whcn, in fact, it is not. Such channel models are realized in practice by examining the
received waveform (signal + noise) and making a statistical decision as to whether a binary 0 or a
1 was received. In the process, information about the reliability of that decision is discarded. To
use that information in order to improve character and message reception reliability, "soft deci-
sion" detection and decoding techniques [FARR79 are under investigation. Significant improve-
ments in message communication have been claimed for these methods, and they should be inves-
tigated.

Finally, the Hamming and RS codes were chosen for this part of the investigation because of
their use in TACFIRE and their popularity among coding theorists and communication system
designers, respectively. The technique studied above is related to "concatenated codes"
[FORN661 which can be constructed from a variety of sets of constituent codes 1COOP781.
Research is needed to select, for this application, codes which are optimum in terms of perfor-
mance vs decoding complexity.
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p Pc Ph
O 10 0.2502 0.5207
0.08 0.1835 0.1029
0.07 0.1565 0.0307
0.06 0.12709 4.94 x 10-

0.05 0.00879 3.21 x 10-4

0.04 0.07206 5.25 x 10r
0.03 0.04380 9.36 x 10-
0.02 0.02157 3.09 x 10-1s

0.01 5.968 x 10.4  7.30 x 10- 0
8.0 x 10- 3.968 x 10' 8.72 x 10- 6
6.0 x 10-4  2.237 x 104  1.30 x 10- 1
5.0 x 104  1.569 x 10 4.61 x lOal
4.0 x 104  1.015 x 10r 4.45 x I"
3.0 x 104  5.764 x 104 5.29 x 10-0

Table 3.1 Probability of Decoding Failure for RS Codes.

IV CONCLUSIONS

A. DISCUSSION OF RESULTS

Improvement of the message rejection rate by several orders of magnitude has been demon-
strated. The present TACFIRE coding technique employs only the shortened Hamming code;
when used on channels with coherent frequency shift keying (FSK) (a common method of impress-
ing digital information onto FM radio signals) with values of signal to noise ratio of approxi-
mately 4 to 8 dB, it produced message rejoction rates ranging from 6 z 10.4 to 0.1. With the con-
catenation of RS codes, these rates dropped -.o a range of 5 z 1040 to 4 z 10 4 .

The penalty to be paid for this improvement is twofold. First, messages have been
lengthened from 48 to 63 characters, an increase of 31% with no corresponding increase in the
amount of information transmitted. Second, an additional stage of encoding and, more signifi-
cantly, of decoding must be added While many efficient decoding algorithms for RS codes are
known, IBERL68. BLAi1791, the evaluation of the added complexity must be the subject of
another report.

B. FURTHER WORK

Undetectable error patterns are more insidious than those considered in this note. For
example, 38 error patterns of weight four are codewords. Since the sum of two codewords is a
codeword, the received vector will be one also. In such cases, no error condition can be detected.
This behavior will be examined in a forthcoming report.

In addition to determining the impact of adding RS decoders to existing TACFIRE message
processing, other factors must be studied. Better coding schemes for new Army Field Artillery
Tactical Data Systems (AFATDS) equpiment should be investigated.

For this analysis, BSC(p) was used with values of p from 0.003 to 0.4. As asserted, the BSC
is a valid model for certain channels which are limited by the noise generated in the radio fre-

quency amplifiers of the receiver. Conditions under which such a model is valid must be deter-
mined. Further, more realistic noise and interference models (e.g., noise bursts) must be con-
sidered, and coding techniques such as the one studied here must be evaluated against them.

Another consideration is that such channel models as the BSC assume that the world is
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distance d = n - k + I [REED60J. For a suitable choice of mr, we will select a RS code for use
on the erasure channel previously described.

D. PERFORMANCE OF THE COMBINED CODING SCHEME

Before actually computing the performance of this coding scheme, its mappings will be care-
fully presented. A specific example, the TACFIRE Digital Message Device (DMD) format, will be
used.

The DMD character set is a 49-element subset of full 7-bit ASCII. Each character is formed
according to the standard 7-bit patterns. However, since 49 < 64, only 6 bits are actually needed
in order to have a unique binary pattern for each symbol to be transmitted-a fact which we shall
now use.

As the DMI) produces 7-bit ASCII characters, they are encoded by the (12,7) Hamming
encoder as at present. Simultaneously, however, these 7 bit characters are mapped into 6-bit pat-
terns. When 48 of these (the length of a DMD message) have been buffered, 15 parity check char-
acters will be computed on them according to the generator matrix of a (63,48) Reed-Solomon
code over GF(2e ). These parity check symbols are, of course, binary 6-tuples. These 6-tuples will
be mapped back into binary 7-tuples according to the inverse of the 7 to 6 mapping. (A rule or a
table can be used, so long as the transformation is reversible.) These 15 7-bit characters are now
encoded by the (12,7) Hamming encoder and are concatenated with the 48 message characters
previously encoded.

Decoding is accomplished in two stages. Received information is processed first by the
decoder for the (12,7) Hamming code. Any double weight error pattern will force this decoder to
output an "erasure" condition. Correctly decoded characters are presented as binary 7-tuples.
These are converted to 6-tuples using the same map as at the encoder and are presented to the
decoder for the (63,48) RS code.

Since character erasures are easily sensed by the RS decoder, it should not try to decode
when more than 15 erasures have occurred. In the context of this note, the received message
should not be acknowledged. The probability that a received message is not acknowledged is,
therefore,

Pd. (61 P, (1P".)' (3-2)

where P,, is the probability of a character erasure at the output of the Hamming decoder. Values
of P, for the BSC are obtained from Table 2.1 and the final results are shown in Table 3.1 and
plotted in Figure 3. 1.
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Table 2.2 shows the detected character error probability (and, hence, the probability of a
non-acknowledged message) as a function of the channel bit error probability for values of the
latter from 0.003 to 0.40. These data are plotted in Figure 3.1.

III. ERASURE CHANNELS AND REED-SOLOMON CODES

A. INTRODUCTION

An iteration of encoding and decoding d.- be added to the scheme so far described. Essen-
tially, the output of the original encoder can be further encoded according to the rules for another
siitably chosen error correcting code. At the channel output, the original code can first be
decoded as before and the result submitted to a second decoder for further processing JCOOP78].
It is useful to postulate a different kind of channel when introducing the additional coding.

B. THE ERASURE CHANNEL

In a received message, a character position where a detectable but uncorrectable error pat-
tern has occurred in the channel can be considered as an erasure, i.e., a location where the
decoder knows that an error pattern has occurred which it cannot correct. Linear block codes can
handle erasures more handily than they can handle errors whose positions are unknown. For
example, a code with minimum distance d can correct (fill in) e erasures in a received word where

d > e + (3-1a)

whereas

d > 21 + 1 (3-1b)

where I = the number of errors correctable by the same code.

We now take a modified viewpoint and consider a noisy channel transmitting characters
(binary m-tuples) rather than individual bits IGORE73]. Characters either are received correctly
from this channel or they are erased. The probability of a character erasure is the probability of
any detectable error pattern. For the (12,7) shortened Hamming code discussed in Section I, this
is given by (2-11).

So the channel under consideration accepts characters, each represented by a binary m-
tuple, and presents to the destination a character erasure with probability given by (2-11). In
what follows, an error detecting and correcting scheme to make this channel quite reliable is
described.

C. EXTENSION FIELDS AND THE BINARY SYMMETRIC CHANNEL

If binary symbols are manipulated m at a time, modern algebra permits all the ordinary
arithmetic operations (addition, multiplication, inverses, and identities) customarily performed
upon real numbers, provided the m-tuples are structured according to certain rules [BERL68].
We say that such a set of elements and operations is a Galois field of 2' elements, GF12").
(When m = 1, we have the familiar binary field.) In GF2'), we can construct linear block codes
as we did in the binary case: to every block of k information symbols from GFR2M) append (n-k)
parity check symbols as linear combinations of the information. Note that this arithmetic is per-
formed in G112').

An interesting class of codes for these fields is that of the Reed-Solomon (RS) codes, which
have the largest minimum distance possible for a given length and dimension (n,k) [BERL68]. A
RS code is a linear block code with symbols from GF12), length n = 2 - 1, and minimum
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,* enumerator for the code: the number of codewords of each weight. Since the shortened (12,7)
Hamming code under consideration has only even weight codewords, the probability of a detect-
able but uncorrectable error pattern is the probability of occurrence, on the binary symmetric
channel, of any even weight error pattern which is not a codeword. If the number of codewords
of weight i is A,, this probability is given by (2-11).

Pd =-A] p2- (1-p)(12 -2 (211

'The values of .4, can be enumerated by generating all 127 non-zero codewords from the gen-

*. erator matrix given above. They are enumerated in Table 2.1. Values of Pd vs p were computed
from (2-11) and are listed in Table 2.2.

i A,
0 0
4 38
6 52
8 33

10 4

Table 2.1 Weight Enumerator for the (12,7) Hamming Code.

P Pd
0.003 5.764 x 10 -4
0.004 1.015 x 10 -
0.005 1.569 x 10-3

0.006 2.237 x 10 -3

0.008 3.898 x 10 -
0.01 5.096s x 10
0 016 0.01.14
0.02 0.02157

0.03 0.04380
0.04 0.07206
0.05 0.09879
0.06 0.1279

0.07 0.1565
0.08 0.1835
0.10 0.2502
0.12 0.3000
0.14 0.3415
0.16 0.3749
0.18 0.4011
0.20 0.4212
0.22 0.4357
0.30 0.4634
0.35 0.4675

10.40 0.4684

Table 2.2 Probability of Detected Error Patterns
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